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We present an approach for the ferromagnetic, three-dimensional, and translational-symmetric Kondo lattice
model, which allows us to derive both magnon energies and linewidths �lifetimes� and to study the properties
of the ferromagnetic phase at finite temperatures. Both “anomalous softening” and “anomalous damping” are
obtained and discussed. Our method consists of mapping the Kondo lattice model onto an effective Heisenberg
model by means of the “modified RKKY interaction” and the “interpolating self-energy approach.” The
Heisenberg model is approximately solved by applying the Dyson-Maleev transformation and using the “spec-
tral density approach” with a broadened magnon spectral density.
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I. INTRODUCTION

The Kondo lattice model1 describes the interaction be-
tween two groups of electrons. One group consists of itiner-
ant conduction-band electrons, which can hop to different
lattice sites. The other group concerns localized electrons
that couple to a magnetic moment of spin S localized at a
certain lattice site. Both subsystems can perform an intra-
atomic interaction with each other while neglecting interac-
tions between the itinerant electrons or between the localized
spins. For nondegenerated band electrons in real space, the
Hamiltonian reads as

H = �
ij�

Tijci�
† cj� −

J

2�
i�

�z�Si
zci�

† ci� + Si
−�ci�

† ci−�� , �1a�

z� = ��↑ − ��↓, S� = S+��↑ + S−��↓, �1b�

where ci�
�†� represents an annihilition �creation� operator for

an electron of spin projection � at a lattice site Ri. J is the
Hund’s coupling constant and Tij are the hopping integrals.
Since we are investigating the ferromagnetic Kondo lattice
model, J�0.

The second term in Eq. �1a� describes an Ising-like inter-
action between the z components of the localized and the
itinerant spin. The third term accounts for the spin-exchange
processes between the two subsystems. We will treat the
three-dimensional, translational-symmetric, and infinitely ex-
tended Kondo lattice model.

The Kondo lattice model is believed to characterize the
basic physics of a wide variety of solid-state materials.

Magnetic semiconductors, e.g., EuO, are a prominent
class of substances, which draw notable attention due to the
“redshift” of the optical-absorption edge upon cooling from
T=TC to T=0K. One can conclude that the coupling constant
J is positive and of the order of some tenth of eV. In contrast,
the magnetic ordering of the localized spins is
explained via special superexchange mechanisms.

Ferromagnetic local-moment metals, such as Gd, are an-
other application. An RKKY-�Ruderman and Kittel,2

Kasuya,3 Yosida4� type interaction is supposed to create the
ferromagnetic order. The magnetism relies on localized 4f
electrons that are shielded from the 4f orbitals of adjacent

atoms by other completely filled orbitals. On the other side,
the conductivity properties are determined by itinerant 5d or
6s electrons.

The discovery of the “colossal magnetoresistance” and its
promising technological application motivated a consider-
able research effort that is related to the manganese oxides
with perovskite structures T1−xDxMnO3 �T=La, Pr, Nd; D
=Sr, Ca, Ba, Pb�. A prototype is the well-known compound
La1−xCaxMnO3, which can be obtained by replacing a triva-
lent La3+ ion with the divalent earth-alkali ion Ca2+ in
La3+Mn3+O3, leading to a homogeneous valence mixture of
the manganese ions Mn1−x

3+ Mnx
4+. The three 3d-t2g electrons

of Mn4+ are considered as localized forming a spin of S= 3
2 .

They are coupled to the n= �1−x� itinerant 3d-eg electrons
per Mn site by a ferromagnetic coupling J�0. J is estimated
to be much larger than the electronic bandwidth since the
manganites are bad electrical conductors.

Many fascinating features of the Kondo lattice model can
be accredited to the complex correlation between the mag-
netic and electronic subsystem. In this regard, one challeng-
ing issue represents the “anomalous softening” of the spin-
wave dispersion, which has attracted comprehensive interest.
The spin-wave dispersion relation of manganites with
high-TC resembles one of a simple Heisenberg model with
nearest-neighbor exchange only.5,6 However, some mangan-
ites with lower-TC exhibit apparent deviations from this be-
havior that are strongly dependent on the band occupation.6–9

Despite extensive theoretical work in this field, the softening
of the dispersion relation near the boundaries of the Brillouin
zone still lacks a complete explanation. Currently, disorder-
induced softening has been excluded for some materials.6,8

On the other hand, the incorporation of an antiferromagnetic
superexchange interaction between the Mn ions into the
Hamiltonian of the Kondo lattice model has been proposed
to take into account the antiferromagnetic tendencies of the
parent material LaMnO3.10

In recent years, unusually large magnon damping at the
Brillouin-zone boundaries and low temperatures has come to
the fore. This is frequently referred to as “anomalous
damping.”6,7 Evidence has been found in neutron-scattering
experiments with manganites and raised questions concern-
ing the nature of anomalous damping and its link to anoma-
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lous softening. Besides the electron-magnon interaction,
some authors speculate about a magnon-phonon coupling for
certain manganites as an origin,7 while other authors reject
it.9 Thus, it is of crucial importance to develop reliable spin-
wave theories for the Kondo lattice model and to study
whether anomalous damping can be traced back to the
electron-magnon interaction.

In this work, we concentrate on the magnetic subsystem
of the Kondo lattice model. The aim is to investigate the
dependencies of the energy as well as the linewidths of the
elementary magnetic excitations called spin waves or mag-
nons, respectively. A subsection of the paper will treat the
anomalous features of the magnon spectrum mentioned
above and include a discussion of the influence of
temperature.

We will present a solution for the Kondo lattice model,
which is as well applicable to the Heisenberg model. It goes
explicitly beyond standard methods, such as the “random-
phase approximation,” by accounting for correlations of
higher order. Although nonpertubative, it is still controlled in
the sense that, in principle, it results from the moments of an
exact high-energy expansion. We assume quantum spins, so
our theory is not restricted to the classical limit of large spin
values S�1.

The paper is structured as follows. First, we will demon-
strate how the Kondo lattice model is mapped onto a Heisen-
berg model �Sec. II�. Both employed theories, the “modified
RKKY interaction” and the “interpolating self-energy ap-
proach,” have been already successfully applied to the
Kondo lattice model for various other problems.11–15 They
will fix the electron-spin interaction. In Sec. III, we will fo-
cus on the spin-spin interaction by presenting a solution for
the Heisenberg model that will not only allow us to calculate
the energy of the magnetic excitations but also their line-
width. Section IV will proceed with numerical results for the
Kondo lattice model that provide insights into the properties
of its ferromagnetic phase and an investigation of the depen-
dence on the intra-atomic coupling constant J, the
conduction-band occupation n, and the temperature T.

II. MAPPING ONTO A HEISENBERG MODEL

The Kondo lattice model provokes a complex many-body
problem solvable only in a few limiting cases. Hence, we try
mapping the Hamiltonian of the Kondo lattice model �1a�
onto an effective Heisenberg Hamiltonian, in which the
conduction-band electrons mediate the indirect exchange in-
teraction between the localized spins. The idea is to use the
“modified RKKY interaction13,16” �mRKKY�, wherein the
Hamiltonian is averaged in the electronic subspace

Hs = −
J

2�
i�

�z�Si
z�ci�

† ci���s� + Si
−��ci�

† ci−���s�� . �2�

The arising expectation value �ci�
† ci−���s� does not vanish

generally since the spin conservation is valid for the total
system of the localized spins and the itinerant electrons while
the averaging is done in the electronic subspace only. The
expectation values can be calculated by using the spectral

theorem and the corresponding electron Green’s functions
called “restricted Green’s functions”

�ci�
† ci���s� = −

1

��
� dEf−�E�Im Gii

��,�s�, �3a�

Gij
��,�s� = ��ci�;cj�

† ���s�, �3b�

�ci�
† ci−���s� = −

1

��
� dEf−�E�Im Gii

−��,�s�, �4a�

Gij
−��,�s� = ��ci−�;cj�

† ���s�, �4b�

where f−�E� is the Fermi function. After introducing the free
Green’s function for noninteracting electrons Gij

�0��E�, the
equations of motion of Gij

��,�s��E� and Gij
−��,�s��E� can be

solved

Gij
��,�s��E� = Gij

�0��E� −
J

2�
l

Gil
�0��z�Sl

z��cl�;cj�
† ���s�

+ Sl
−���cl−�;cj�

† ���s�� , �5�

Gij
−��,�s��E� = −

J

2�
l

Gil
�0��− z�Sl

z��cl−�;cj�
† ���s�

+ Sl
���cl�;cj�

† ���s�� . �6�

Now we replace the restricted Green’s functions on the right-
hand sides of Eqs. �5� and �6� with their full equivalents

Gij
��,�s��E� → Gij��E� = ��ci�;cj�

† �� , �7�

Gij
−��,�s��E� → Gij

−���E� = 0. �8�

Gij
−���E� vanishes because of spin conservation. Gij��E� la-

bels the Green’s function of interacting electrons.
These solutions are inserted into the averaged Hamil-

tonian �2�. Eventually, our approach leads to an effective
Heisenberg Hamiltonian17

HKondo →
mRKKY

Heff = − �
ij

JijSi · S j . �9�

The effective exchange integrals are functionals of the elec-
tronic self-energy �ij��E� via the electron Green’s function
Gij��E�,

Jij =
J2

4��2� dEf−�E�Im�
�

Gij
�0��E�Gij��E� . �10�

The replacements �5� and �6� comprise many-body correla-
tions of higher order than the conventional RKKY theory
that would be obtained by replacing

Gij
��,�s��E� → Gij

�0��E�, Gij
−��,�s��E� → 0. �11�

We use the interpolating self-energy approach18 �ISA� in or-
der to set the electronic self-energy �ij��E�. It is derived for
the limiting cases of the ferromagnetically ordered semicon-
ductor, the atomic limit, and second-order pertubation theory
assuming vanishing band occupation n=���ci�

† ci��→0. An
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interpolation between the limiting cases performed by fitting
leading terms in its rigorous high-energy expansion provides
the result

�ij��E� = −
J

2
z��Sz��ij +

J2

4

a�Gii
�0��E −

1

2
Jz��Sz��

1 − b�Gii
�0��E −

1

2
Jz��Sz���ij ,

�12a�

a� = S�S + 1� − z��Sz��z��Sz� + 1�, b� =
J

2
. �12b�

Although derived in the low-concentration limit, we apply
the self-energy �12a� to the case of finite band occupations
n�0.

In summary, the problem is reduced to the solution of an
effective Heisenberg model with exchange integrals Jij that
depend on the coupling constant J, the band occupation n,
and the temperature T: Jij =Jij�J ,n ,T�.

III. EFFECTIVE HEISENBERG MODEL

A. Solution

It is convenient to transform the spin operators Si of the
effective Heisenberg Hamiltonian �9� into bosonic magnon
operators 	ai ,ai

† ,ni=ai
†ai
 by means of the Dyson-Maleev

transformation19–21

Si
+ = �2Sai, Si

− = �2Sai
†�1 −

ni

2S
� , �13a�

Si
z = S − ni. �13b�

After a Fourier transformation, the Heisenberg Hamiltonian
then reads in momentum space as

HHeisenberg → HDM =
1

N
�
q�

��q�nq�

+
1

N4 �
q1. . .q4

�Jq4
− Jq1−q3

�aq1

† aq2

† aq3
aq4

�q1+q2,q3+q4
, �14�

where ��q=2S�J0−Jq� stands for the bare energy of a free
magnon with momentum q and N for the number of lattice
sites. The second summand of HDM in Eq. �14� describes the
magnon-magnon interaction and causes the existence of fi-
nite linewidths and the renormalization of the magnon en-
ergy. The Dyson-Maleev transformation makes it possible to
take the complete interaction between the magnons into ac-
count without making approximations that are necessary for
other theories, e.g., the Holstein-Primakoff transformation.22

At this stage, we need to mention that the transformation
�13a� and �13b� leads to unphysical states for temperatures
near the transition temperature TC since we transform from a
Hilbert space, which is �2S+1� dimensional into one with
infinite dimensions. Nevertheless, according to Dyson, the
contributions to the free energy from these unphysical states

are smaller than exp�−	
TC

T �, where 	 is a coefficient of order
unity.20

Additionally, Si
+ and Si

− are not Hermitian conjugated in
the Dyson-Maleev formalism. However, Bar’yakhtar et al.23

showed that the contributions to spin-correlation functions
from unphysical states, arising from the non-Hermiticity, are
of the order of exp�− T�

T �, where kBT�=S�2S+1�J0.
The bosonic Heisenberg model �14� is solved by applying

the “spectral density approach.” The spectral moments of the
spectral density Sq�E� are defined by

Mq
�n� =

1

�
� dEEnSq�E� , �15�

but they can also be evaluated exactly and independently
from Eq. �15� by the following relation:

Mq
�n� = � aq,H�−, . . . ,H�−

p-fold commutator

,�H, . . . ,�H,aq
†�−�−

�n−p�-fold commutator

−� .��� �

�16�
The approach requires a spectral density, which is usually
guessed, e.g., from experiments or theoretical considerations.
Parameters of Sq�E� can be evaluated by a sufficient set of
equations that is derived from the equivalence of Eqs. �15�
and �16�.

In our case, Sq�E� represents the magnon spectral density,
which is associated with the average magnon occupation
number by the spectral theorem

�aq
†aq� = �nq� =

1

�
� dEf+�E�Sq�E� , �17�

where f+�E� is the Bose function. Since we are interested in
lifetime effects, we need to fit the first three spectral mo-
ments Mq

�n
2� and use a spectral density of finite width. The
renormalized magnon energies ��q and their spectral line-
widths �q or lifetimes, respectively,


q =
�

�q
�18�

work as parameters that need to be calculated from the set of
equations.

For simplicity and without loss of generality, we want to
restrict our derivation to a symmetric spectral density
Sq���q+E�=Sq���q−E�.24 This is in agreement with
neutron-scattering experiments25 and other theories,26 where
Sq�E� has the approximate shape of a Lorentzian

Sq
Lorentzian�E� =

��q

�

1

�E − ��q�2 + �q
2 �19�

or a Gaussian, respectively,

Sq
Gaussian�E� =

�

���q

e−�E − ��q/�q�2
. �20�

One must keep in mind that the Lorentzian must be restricted
to a finite energy interval, ensuring a finite second spectral
moment Mq

�2�.
The zeroth spectral moment
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Mq
�0� = ��aq,aq

†
−� = 1 �21�

expects a normalized spectral density Sq�E� according to Eq.
�15�. For the first spectral moment, we get

Mq
�1� = ���aq,HDM
−,aq

†
−�

= ��qMq
�0� +

2

N
�
q�

�Jq + Jq� − J0 − Jq�−q��nq�� .

�22�

The result for the second spectral moment is

Mq
�2� = ���aq,HDM
−,�HDM,aq

†
−
−�

= 2��qMq
�1� − ���qMq

�0��2

+
1

N4 �
q1. . .q4

�Jq3
+ Jq4

− Jq3−q − Jq4−q�

��Jq + Jq1+q2−q − Jq1−q − Jq2−q�

��2�aq3+q4−q
† aq3

aq2

† aq1+q2−q��q1,q4

+ 2�aq3+q4−q
† aq2

† aq3
aq1+q2−q��q1,q4

− �aq1

† aq2

† aq3
aq4

��q1+q2,q3+q4
� . �23�

A simple ansatz for the unknown higher expectation values
in Eq. �23�, such as �aq3+q4−q

† aq3
aq2

† aq1+q2−q�, is derived by
decoupling them using a mean-field approximation with
respect to the momentum conservation,

�aq3+q4−q
† aq3

aq2

† aq1+q2−q��q1,q4

→
MF

�aq3+q4−q
† aq3

��aq2

† aq1+q2−q��q1,q4
�q4,q

+ �aq3+q4−q
† aq1+q2−q��aq2

† aq3
��q1,q4

�q2,q3

. . . . �24�

Therewith, the solution is formally completed

Mq
�2� = ���qMq

�0��2

+
1

N2�
q�

�
q�

�2�Jq� + Jq�−q�+q − Jq�−q − Jq�−q��

��Jq + Jq� − Jq�−q − Jq�−q��

− �Jq� + Jq� − Jq�−q − Jq�−q�

��Jq + Jq�+q�−q − Jq�−q − Jq�−q�
�nq���nq�� . �25�

For numerical reasons, we still need to simplify Eq. �25� to
prevent eight-dimensional integrals in expressions, such as
1

N2 �q��q�Jq�−q�+qJq��nq���nq��. This is done by exploiting the
translational symmetry

J0 − Jq = �
shells i

ziJi�1 − �q
�i�� , �26a�

�q
�i� =

1

zi
�

R of

shell i

eiq·R. �26b�

A shell is defined by all lattice sites R at the same distance

�R− R̃� to an offset lattice site R̃.27 Thereby, zi denotes the
number of all lattice sites of shell i and Ji the exchange
integral of shell i. The shells are numbered and sorted by the
size of their radii, i.e., i=1 stands for the nearest neighbors,
i=2 for the next-nearest neighbors, etc. Within the shell con-
cept, the problematic terms easily factorize28

1

N2 �
q�q�

�q�−q�−q1

�i� �q�−q2

�j� �nq���nq��

= �q1

�i��q2

�j� 1

N
�
q�

��q�
�i��nq��� �

shells m

Nijm
1

N�
q�

�q�
�m��nq�� , �27�

where we use a notation similar to Dvey-Aharon and
Fibich29

Nijm =
1

zizj
�

Ri,Rj

�Ri+Rj,Rm
. �28�

Nijm gives the number of shell vectors Rm that can be con-
structed out of the sum of shell vectors of the shells i and j

Ri + R j = Rm. �29�

By applying the shell concept not only to the expressions of
the second spectral moment Mq

�2� in Eq. �25� but also to the
first spectral moment Mq

�1� in Eq. �22�, we finally obtain after
some algebra

��q = 2 �
shells i

ziJi�1 − �q
�i���S − Ai� , �30a�

�q
2m̃q = 4 �

shells i,j
zizjJiJjFij · �1 − �q

�i���Fij + �Aj − Ai��1 − �q
�j��
 .

�30b�

The influence of the shape of Sq�E� on the second spectral
moment Mq

�2� is contained in the dimensionless quantity m̃q

m̃q =
1

�
� dxx2�qSq�x�q + ��q� . �31�

When using a Lorentzian or a Gaussian spectral density, m̃q
is advantageously independent in the momentum q.

Fij is merely determined by the Ai

Fij = A0 − Ai − Nij0A0 − �
shells m�0

Nijm�A0 − Am� . �32�

Therewith, the Ai remain the only unknown quantities in Eq.
�30a� and �30b� at a given temperature. Because of the defi-
nition
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Ai = �
1

N
�
q�

�nq�� if i = 0

1

N
�
q�

�1 − �q�
�i���nq�� if i � 0,� �33�

the Ai depend on the spectral density Sq�E� and via the Eqs.
�30a� and �30b� on each other

Ai = Ai�	Aj
� . �34�

Therefore, they have to be self-consistently calculated. With
the solution satisfying Eq. �34�, one can directly compute
��q and �q for a given momentum q.

B. Comparison to experimental data and other theories

In terms of checking our theory for a real system, we
consider the Heisenberg ferromagnet EuO, whose exchange
integrals J1 and J2 are known.30 According to Fig. 1, a good
agreement concerning the magnon properties ��q and �q,
and the magnetization �Sz� can be found between the numeri-
cal results of our theory and the experimental data for a wide
range of low and intermediate temperatures and for not-too-
small momenta.25,30–32 At temperatures near TC, the unphysi-
cal states cause a wrong first-order phase transition that con-
tradicts the experimental data.

Results similar to Eq. �30b� have been obtained by other
theories of the Heisenberg model,26,33–35 but one notes dif-
ferences for a small range of small momenta q→0. There,
the linewidths of our formula �30b� turn out to be too large:

�q
2 �

q→0

q2;

other authors33 propose at least a dependence �q �
q→0

q2; This
discrepancy must be classified as a consequence of our ap-
proximations. Furthermore, our results give �X�T��T1.4,
while the authors of Refs. 33 and 34 suggest a stronger
dependence �q�T3.

IV. KONDO LATTICE MODEL

In order to circumvent the problem of too many possible
parameter combinations to discuss, we have chosen three
exemplary regions. Small band occupations should be a suit-
able criterion for ferromagnetic semiconductors and J=W for
manganites, where W is the electronic bandwidth. Intermedi-
ate J and intermediate n define a parameter range with obvi-
ous anomalous magnon softening and damping. The setting
of the main parameters is listed in Table I.

Equations �33�, �30a�, and �30b�, respectively, predict that
the Ai vanish and, consequently, �q→0 for T→0K when no
magnon-magnon interaction is present. This contradicts the
results of other theories of the Kondo lattice model, which
give finite linewidths at T=0K due to direct contributions to
�q by electron-magnon interactions.36,37

A. Small band occupation

This limiting case is implemented in our calculations by
setting n=0.01. For all values of J�0, the exchange inte-
grals Jij are positive, making ferromagnetism possible �Fig.
2�. The growth of the exchange integrals Jij for increasing J
is accompanied by a corresponding growth of both the mag-
non energies ��q and the linewidths �q �Fig. 3�. For small J,
we find that ��q and �q are nearly independent on the mo-
mentum q since all exchange integrals Jij are of the same
order of magnitude. That is why higher exchange integrals
Jn�1 have great influence on ��q and �q. However, for J
�W, the magnon energy and linewidth are mainly governed
by the nearest-neighbor coupling J1, and higher exchange
integrals can be neglected. Accordingly, ��q and �q con-
verge to the common curve shape of a ferromagnetic nearest-
neighbors Heisenberg model.
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<
Sz >

magnetization (theory)
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EuO

FIG. 1. �Color online� Temperature dependence of the magnon
energy ��q�T� and the linewidth �q�T� for q= �q�=0.8 Å−1 and of
the magnetization �Sz��T�. The calculations �lines� are carried out
for the parameters of EuO �Ref. 30� in comparison to experimental
data from Refs. 25, 31, and 32 �crosses�. As in the experimental
analysis, a Lorentzian �19� is used for the magnon spectral density
Sq�E�.

TABLE I. Setting of the main parameters used in the calcula-
tions for Sec. IV.

Lattice structure Simple cubic �sc�
Spin value S 3

2

Magnon spectral density Sq�E� Gaussian �20�
Conduction band s band, bandwidth W=1 eV,

tight binding

0 0.2 0.4 0.6 0.8 1
J (eV)

0
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0.04
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0.08
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J
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J
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J
3

J
4

J
5

n=0.01

FIG. 2. �Color online� Small band occupation n=0.01. Ex-
change integrals Jij of the first five shells at T=0.1 K as a function
of the coupling constant J.
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The spin-resolved electron density of states ��
el�E� �Fig. 4�

features the typical properties of the ISA for the case of low
temperatures.18 For weak couplings J�0, there is just a
small exchange splitting between �↑

el�E� and �↓
el�E�. For

strong couplings, the �↓
el�E� band splits into two subbands.

One is shifted by about + J
2 �S+1� to larger energies and is

built up by electrons that stabilize their state by permanently
absorbing and emitting magnons �“magnetic polaron”�. The
second band at smaller energies is the scattering band for
electrons that have flipped their spin by emitting a magnon.
At nonzero temperatures, a high-energy subband for ↑ elec-
trons too emerges, mainly provoked by thermally excited
magnons.

B. “Strong-coupling” regime

Although the strong-coupling regime is often identified
with the condition J�W, we will use this term for the situ-
ation J=W as well since it marks a threshold in J where no
qualitative deviations appear any more in the quantities
which we regard here.

Starting at small band occupations n and with increasing
n, the magnon energies ��q grow and the linewidths �q
decline �mainly at the X point, Fig. 5�. This is made clear by
the fact that the exchange integrals Jij first grow because

more indirect exchange between the localized spins is pos-
sible when there are more conduction-band electrons present
�Fig. 6�. ��q and �q reach a maximum �minimum� at about
quarter band filling n�0.5 and take the usual curve shape of
a ferromagnetic nearest-neighbors Heisenberg model. When
reaching even larger electron densities n, this behavior is
reversed. The energies decrease and the linewidths increase
�mainly at the R point�, relying on negative higher exchange
integrals Jn�1�0 �antiferromagnetic coupling� and the de-
clining nearest-neighbor coupling J1. For band occupations
above a critical value of n�0.8, this trend leads to negative
magnon energies that destabilize the ferromagnetic order and
prefer antiferromagnetism. The reason why the antiferromag-
netic state is more favorable for the case of half band filling
n=1 can be understood with Pauli’s exclusion principle. The
electrons can reduce their energy when they virtually hop to
adjacent lattice sites, which is only possible if there is no
electron with the same spin present.

A study of the temperature dependence �inset of Fig. 6�
reveals that primarily the nearest-neighbor coupling J1 is en-
hanced for rising temperatures, while higher exchange inte-
grals remain temperature independent.
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C. Anomalous magnon softening and damping

In the case of intermediate couplings J and intermediate
band occupations n, the magnon energies and linewidths sen-
sitively depend on both J and n. We investigate the situation
for different values of J in the vicinity of a band filling of
n=0.25 and J=0.4 eV.

Higher exchange integrals Jn�1 are comparatively large
and often negative for J�0.5 eV �Fig. 8�, giving rise to
distinct deformations of the magnon dispersion relation ��q
and of the curve shape of �q mainly at the Brillouin-zone
boundaries �Fig. 7�. The strongest modifications of the mag-
non dispersion relation occur around the X point along with
smaller ones at the R point. Below a critical J=0.28 eV,
parts of the Brillouin zone evolve, where the magnon energy
becomes negative and for this reason ferromagnetism un-
stable. The linewidths exhibit deviations from the common
behavior of a ferromagnetic nearest-neighbors Heisenberg
model between � and X point and at the M point. Compared
to X and M point, they are unusually small at the R point,
which leads to unusually long magnon lifetimes. When ap-
proaching the critical J, the linewidths dramatically increase
as expected from a Heisenberg model near the transition
from the ferromagnetic to the paramagnetic state.

Furthermore, we find distinct long-range oscillations of
the exchange integrals between ferromagnetic Jij �0 and an-
tiferromagnetic couplings Jij �0 qualitatively similar to the
conventional RKKY theory �inset of Fig. 8�.

It should be pointed out that all the mentioned effects are
consequences of solely electron-magnon and magnon-
magnon interactions.

When we increase the temperature �Fig. 9�, ��q and �q
reveal unexpected characteristics. The deviations at the X
point in relation to the usual Heisenberg model are reduced,
and the magnon energies grow with increasing T — even at
temperatures near TC. This behavior radically differs from
the usual behavior observed for a Heisenberg model �e.g.,
Fig. 1�. It relies on the growth of the corresponding exchange
integrals Jij�T�, mainly of J1 and J4, favoring the ferromag-
netic order. Furthermore and in contrast to Secs. IV A and
IV B and to the results for EuO in Sec. III B, we observe a

relatively strong temperature dependence of the linewidths,
which behave like �X�T��T2 for J=0.4 eV �Fig. 9�.

Although the magnon density of states �inset of Fig. 9�
contains the characteristic tight-binding curve shape, owing
to a dominating nearest-neighbor exchange J1, it exhibits de-
viations at energies E�30 meV and low temperatures due
to the deformations in ��q and �q. The rise in temperature
first leads to larger spectral weight at E�30 meV and fi-
nally washes out the structure because of the larger line-
widths near TC.

Anomalous magnon softening and damping can be de-
tected in neutron-scattering experiments with
manganites.6–9,38 From the theoretical point of view, anoma-
lous softening at the X point has been reported by other
authors,11,39 confirming the parameter range of intermediate
J and n. A theory that features anomalous magnon damping
has been proposed by Pandey et al.36 Therein, the spin op-
erators Si in the Hamiltonian of the Kondo lattice model �1a�
are fermionized by localized electrons in atom orbitals. An
“inverse-degeneracy expansion approach” is applied, de-
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scribing the diagrammatic contributions in powers of the in-
verse number of orbitals incorporated in the calculations.
The authors have mentioned clear differences from the com-
mon behavior of a Heisenberg model for ��q at X and M
point and for �q between M and R point, even for large J
=6W and J→�. In the double exchange limit J→�, other
authors37 have found anomalous softening and damping too.

V. CONCLUSIONS

We have presented an approach for calculating the mag-
non energies ��q and linewidths �q for the Kondo lattice
model and examined their dependencies on the band occupa-
tion n, the coupling constant J, and the temperature T. Like-
wise, our ansatz allows us to study other interesting quanti-
ties such as the electron and magnon density of states ��E� or
the exchange integrals Jij. We have studied it for small band
occupation, the case of J=W, and for intermediate J and n,
where the magnon spectrum shows anomalies at the
Brillouin-zone boundaries. These deviations can be ex-
plained by partial antiferromagnetic indirect exchange be-
tween the localized spins as a consequence of electron-
magnon and magnon-magnon interaction. We have
demonstrated that the deformations of the magnon dispersion
relation due to anomalous softening become smaller as the

temperature rises. As mentioned above, these anomalies are
caused by electron-magnon and magnon-magnon interac-
tions only. This finding could permit a better understanding
of the origin of similar anomalies in real materials.

Note that our method is also applicable directly to a pure
Heisenberg model with given exchange integrals Jij.

When comparing our numerical results with experimental
data of La0.7Ca0.3MnO3,7,9,38 we state differences in ��q and
�q. Although it is difficult to compare theory and experiment
without knowledge of the electronic band structure, it can be
argued that the differences can be ascribed to the Hamil-
tonian �1a�, which we have used to derive our results �30a�
and �30b�. Namely, it does not involve electron-electron,
spin-spin, or electron-phonon interactions, even though they
are regarded as essential for the manganites. The linewidths
calculated by our method turn out to be too small,7,37 which
can be explained by the absent electron-phonon interaction.
Moreover, it has been shown that the incorporation of an
on-site interaction U between the itinerant electrons changes
the magnon dispersion relation drastically.40 In order to take
these terms into account, our approach can be extended.12,41
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